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Transient heat transfer of coupled radiation and conduction inside a semitransparent composite slab of
absorbing–emitting-anisotropic scattering medium is examined. The composite slab includes two layers
with different physical properties. Surfaces and interface between two layers are supposed to be semi-
transparent and total reflection will occur there at the critical angle. Specular reflection is considered
and reflectivities are determined by Fresnel’s law and Snell’s law. A fully implicit control-volume method
is used to solve the transient energy equation and a ray-tracing/nodal-analyzing method is used to com-
pute the radiative information. A criterion for total reflection is proposed for solving the problem of inte-
gral singularity at the critical angle. Effects of conduction–radiation parameter, scattering albedo and
refractive index on coupled heat transfer are investigated. Results show that in a semitransparent med-
ium with natural surfaces, there are two sorts of temperature peaks appearing at transient heat transfer:
one is caused by external radiation heating and environmental convection cooling, still existing in steady
state; the other is due to maximum of absorption of heat caused by inhomogeneous optical properties,
only existing in transients of heat transfer.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Coupled radiative and conductive heat transfer is the main
mode of energy transfer in a semitransparent solid medium at ele-
vated temperatures, in high temperature surroundings, with large
incident radiation, or in vacuum circumstances with weak convec-
tion of low and moderate temperature. Some errors will be caused
if only considering conduction or radiation. For a long time, consid-
erable attention has been given to the problem for its many impor-
tant applications, such as multilayer spaceborne optical windows,
combustion fabrication device, the insulation properties of fibrous
and ceramic materials.

A solution to coupled radiation–conduction involves two parts:
the solution to the radiative transfer equation, and the solution to
the energy equation. An evaluation of the former can adopt such
methods as DOM (discrete ordinates method), DTM (discrete trans-
fer method), flux method, RTNAM (ray-tracing/nodal-analyzing
method), zone method, FVM (finite-volume method) and so on.
The latter can be solved using FDM (finite difference method),
FVM, FEM (finite element method), LBM (lattice Boltzmann Meth-
od) and meshless method.

Muresan et al. [1] solved the coupled conductive radiative heat
transfer in a two-layer non-scattering slab with Fresnel interfaces
ll rights reserved.
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subject to diffuse and obliquely collimated irradiation using a
DOM for the solution to the radiative transfer problem and a
FDM for the solution to the energy equation. In Ref. [1], adaptive
directional quadratures were developed to overcome the difficul-
ties usually encountered at the interfaces. Mishra et al. [2] exam-
ined transient conductive–radiative heat transfer in a 2-D
rectangular enclosure filled with an optically absorbing, emitting
and scattering medium using LBM for the solution to the energy
equation and the collapsed dimension method for the radiative
transfer equation, and analyzed the effects of the conduction–radi-
ation parameter, extinction coefficient and scattering albedo. Using
DOM/FDM for the solution to the radiative transfer equation and
the energy equation, David et al. [3] investigated transient heat
transfer involving radiation and conduction in a 2-D non-gray
purely absorbing glass. Using FVM/LBM, the transient conduc-
tion–radiation heat transfer in 1-D planar and 2-D rectangular
geometries was solved, and effects of the scattering albedo, the
conduction–radiation parameter and the boundary emissivity
were analyzed [4].

Most of the previous work on radiative heat transfer only con-
sidered isotropic scattering or non-scattering in the semitranspar-
ent material. However, it is well known that scattering of thermal
radiation by real particles, fibers, or impurities in a medium is by
no means isotropic and that the anisotropic scattering can play a
significant role on overall heat transfer. Consequently it is neces-
sary to carry on an investigation in radiative heat transfer within
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Nomenclature

Cn specific volume heat capacity of the layer n, =cnqn,
J m�3 K�1

FVn a direct exchange area of Vi vs Vi in the nth layer, equal
to FVn = 4jnDxn � 2[1 � E3(jnDxn)], n = 1, 2

h1, h2 convective heat transfer coefficient at surfaces of S1 and
S2, respectively, W m�2 K�1

H1, H2 convection–radiation parameter, H1 ¼ h1=rT3
r and

H2 ¼ h2=rT3
r

L thickness of the composite medium, m
kn thermal conductivity of the nth layer, W m�1 K�1, n = 1,

2
kie, kiw harmonic mean thermal conductivity at interface ie and

iw of control volume i, respectively
Nn kn=ð4rT3

r LÞ, conduction–radiation parameter of the nth
layer, n = 1, 2

Ncv1, Ncv2 number of control volumes in the first layer and the
second layer, respectively

Mt total number of control volumes of the composite med-
ium

ni refractive index of the control volume i; when i 6 Ncv1,
ni is equal to the refractive index of the first layer, and
when i > Ncv1, ni is equal to the refractive index of the
second layer

nn refractive index of the nth layer, n = 1, 2
Su, Sv black surfaces, S�1 and S+1, respectively
S1, S2 boundary surfaces
S�1, S+1 black surfaces representing the surroundings
(SuSv), (SuVj), (VjSu), (ViVj) absorbing RTCs of surface vs surface,

surface vs volume, volume vs surface and volume vs
volume

[SuSv], [SuVj], [VjSu], [ViVj] scattering RTCs of surface vs surface,
surface vs volume, volume vs surface and volume vs
volume

T absolute temperature, K
Tg1, Tg2 gas temperatures for convection, K
Tr,T0 reference temperature, initial temperature, K
t physical time, s
t* dimensionless time, ð4rT3

r =CnLÞt, only for the case of
Cn = constant

xj
i normal distance between element i and element j, m

bn a common ratio of geometric progression when the
radiation transfers in the nth layer, n = 1, 2

bij a common ratio of geometric progression when the
radiation enters the jth layer from the ith layer and
transfers inside the two-layer medium

cij transmissivity at interface when radiation enters the j
layer from the i layer, equal to 1 � qij

Dt time interval, s
Dxn thickness of each control volume of the nth layer, m
dij a Dirac functor; if i = j, then dij = 1, and if i – j, then dij = 0
(dx)ie, (dx)iw distance between nodes i and i + 1 and between i and

i � 1, respectively
gn 1 �xn, n = 1, 2
Hq

nðhÞ;H
h
nðhÞ radiative energy distribution function of forward

scattering and backward scattering respectively, for
the nth layer, n = 1,2

h, hs incident angle, scattering angle, rad
hij refractive angle when radiation enters the j layer from

the i layer
jn extinction coefficient of the nth layer, m�1, n = 1, 2
qij reflectivity at interface when radiation enters the j layer

from the i layer
r Stefan–Boltzmann constant, =5.6696 � 10�8 W m�2 K�4

Un scattering phase function of the nth layer, n = 1, 2
Ur

i radiative heat source of the control volume i
xn scattering albedo of the nth layer, n = 1, 2

Subscripts
k;? component for parallel and perpendicular polarization,

respectively
ie,iw right and left interface of control volume i
�1, +1 black surfaces S�1 and S+1, respectively

Superscripts
b,f,t incidence radiation from negative, positive and both

direction relative to the x axis, respectively
h, q backward scattering and forward scattering relative to

the incident direction, respectively
r radiation
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anisotropic scattering participating medium. Much attention has
been focused by many researchers on the problem [5–19].

Using the zone method, Goyheneche and Sacadura [7] estab-
lished a new explicit matrix relation for the calculation of the total
exchange areas (TEA) in emitting, absorbing and linearly aniso-
tropic scattering semitransparent medium with black surfaces.
Chai [9] presented a FVM to calculate transient radiative transfer
in two-dimensional irregularly shaped enclosures with anisotropic
scattering. Elghazaly [16] used the Galerkin-iterative technique to
solve the coupled conductive–radiative transfer problem in a slab
with two homogeneous layers of linearly anisotropic scattering
with specularly reflecting boundaries and analyzed the effects of
phase functions and anisotropic scattering coefficient on heat
fluxes. Reflectivity was supposed to be zero in Ref. [16]. Zhou
et al. [17] adopted the DRESOR method to deal with the radiative
transfer in an anisotropic scattering, emitting, absorbing, plane-
parallel medium with opaque surfaces, analyzing the effects of
anisotropic scattering coefficient, scattering albedo and optical
thickness. Asllanaj et al. [19] investigated transient radiative–con-
ductive heat transfer in a fibrous medium with anisotropic optical
properties using two-flux method/FEM for the solution to the radi-
ative transfer equation and the energy equation.
The RTNAM was firstly proposed by Tan and Lallemand [20] and
its advantage is that when solving radiative transfer equation, the
radiative intensity does not need to be dispersed along the space
coordinate, and the solid angle is not dispersed but is directly inte-
grated. Thus, false scattering and ray effect will not exist in the
method. So, the accuracy of this method is high in theory. Sadooghi
et al. [21,22] and Sharbati et al. [23] adopted the method for the
solution to the radiative transfer and investigated the coupled heat
transfer in a purely absorbing ceramic layer [21,22] and a cellulose
acetate layer [23]. Tan et al. [24,25] developed a two-layer [24] and
a multilayer [25] radiative transfer model using RTNAM and solved
the transient coupled heat transfer. Scattering was not considered
in Refs. [21–23] and anisotropic scattering was not considered in
Refs. [24,25]. After that, using this method, Tan et al. [26] built a
radiative heat transfer model for an anisotropic scattering layer.

Present work develops a radiative transfer model for a two-
layer composite with anisotropic scattering using the RTNAM. In
this paper, RTCs (radiative transfer coefficients) include all infor-
mation about the radiative transfer, and they are deduced by the
ray-tracing method. Local radiative heat source in the energy equa-
tion is expressed in terms of RTCs and is deduced using the nodal-
analyzing method. Semitransparent interfaces between two layers
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and between the composite and surroundings are considered.
Specular reflectivity is determined by Fresnel’s law and Snell’s
law. Total reflection criterion is proposed to settle the complicated
total reflection problem at semitransparent interfaces which will
result in integral singularity problem at the critical angle. The
treatment is different from that proposed by Tan et al. [25], and
it will not introduce any errors to results. Effects of conduction–
radiation parameter, scattering albedo and refractive index on cou-
pled heat transfer are analyzed.

2. Physical model and basic equations

A two-layer composite geometry with thickness of L under con-
sideration is shown in Fig. 1. Both boundary surfaces of the geom-
etry are semitransparent and specular, and contained medium is
absorbing, emitting and anisotropic scattering. The two-layer
geometry is irradiated by two black surfaces S�1 and S+1, indicat-
ing the environment of temperatures T�1 and T+1, respectively.
Between S1and S�1 and between S2 and S+1 are convective gases
with temperatures of Tg1 and Tg2. Along the geometry thickness,
the composite is divided into Mt control volumes, and the total
number of nodes is Mt + 2, with node 0 locating S1 and node
Mt + 1 locating S2. The number of control volumes of the left layer
is Ncv1, and that of the right layer is Ncv2. The thermophysical and
optical properties in each layer are different.

According to Fig. 1, in a fully implicit discrete format, the tran-
sient energy equation of coupled radiation and conduction, be-
tween the time intervals t and t + Dt, is written as

CnDxn
Tmþ1

i � Tm
i

Dt
¼ kmþ1

ie ðTmþ1
iþ1 � Tmþ1

i Þ
ðdxÞie

� kmþ1
iw ðTmþ1

i � Tmþ1
i�1 Þ

ðdxÞiw
þUr;mþ1

i ð1Þ

where node i locates in the nth layer of the composite, and Ur
i is the

radiative source of control volume i. By the nodal-analyzing meth-
od, for the gray medium, Ur

i can be expressed as

Ur
i ¼ rðn2

þ1½Sþ1Vi�t�tT
4
þ1 � n2

i ½ViSþ1�t�tT
4
i Þ

þ r
XMt

j¼1

ðn2
j ½VjVi�t�tT

4
j � n2

i ½ViVj�t�tT
4
i Þ

þ rðn2
�1½S�1Vi�t�tT

4
�1 � n2

i ½ViS�1�t�tT
4
i Þ ð2Þ

where such as [S+1Vi], [ViVj], [S�1 Vi] and so on are RTCs, deduced
by the ray-tracing method.

The discrete boundary condition at semitransparent boundary
surface S1 is as follows:
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Fig. 1. Discrete ph
2k1ðT1 � TS1 Þ=Dx1 ¼ h1ðTS1 � Tg1Þ ð3Þ
From Eq. (1), major difficulty in coupled radiative–conductive heat
transfer problem is the solution to the local radiative source Ur

i , and
the key to solve Ur

i , according to Eq. (2), is in deducing the RTCs.

3. Radiative transfer coefficients

RTC of element i (surface or control volume) with respect to ele-
ment j is defined as quotient of the radiative energy absorbed by
element j to the radiative energy emitted by element i. [ViVj]t�t is
taken as an example to illustrate the deduction of RTCs. From
Ref. [26], the deduction of [ViVj]t�t must start with the deduction
of ðViVjÞft�t , ðViVjÞbt�t , (Vi Vj)t�t, ðViVjÞfft�t , ðViVjÞfbt�t , ðViVjÞbf

t�t and
ðViVjÞbb

t�t . [ViVj]t�t is called as the scattering RTC, (ViVj)t�t is called
as the absorbing RTC, ðViVjÞft�t and ðViVjÞbt�t are called as the direc-
tional incidence RTCs, and ðViVjÞfft�t , ðViVjÞfbt�t , ðViVjÞbf

t�t and ðViVjÞbb
t�t

are called as the directional scattering RTCs. Superscript of the
directional incidence RTC denotes the direction of radiative inci-
dence on the second control volume Vj; The first superscript of
the directional scattering RTC denotes the direction of radiative
incidence on the second control volume Vi, and the second super-
script denotes the direction of radiative incidence on the second
control volume Vj. Superscript ‘‘f” denotes the positive direction
of x-axis, and superscript ‘‘b” denotes the negative direction of x-
axis. In the following deduction, symbol FB

A;n, denoting a single-
layer radiative transfer model, determined in Appendix A, is used
to denote the ratio of the radiative energy received by the control
volume or interface B to that emitted by the control volume or
interface A in the energy transfer process in the nth layer. FVn is
a direct exchange area of Vi vs Vi in the nth layer, equal to
FVn = 4jnDxn � 2[1 � E3(jnDxn)], n = 1, 2. For convenience sub-
script ‘‘t � t” denoting semitransparent surfaces are omitted.

3.1. Deduction of the absorbing and the directional incidence RTCs

The absorbing RTC (ViVj) includes two parts: the positive inci-
dence RTC (ViVj)f and the negative incidence RTC (ViVj)b, that is

ðViVjÞ ¼ ðViVjÞf þ ðViVjÞb ð4Þ
(1) If i 6 Ncv1 and j 6 Ncv1, then
ðViVjÞf ¼ 2
Z p=2

0
f FVj

Vi ;1
ðhÞ sinhcoshdh

þ2
Z p=2

0

FP
Vi ;1
ðhÞc12ðhÞF

P
P;2ðh12Þc21ðh12Þf FVj

P;1ðhÞ
1� b12

sinhcoshdh

þ 0:5dijFV1 ð5aÞ
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Fig. 2. Four transferring paths from Vi scattered to Vj in forward direction,
i < j 6 Ncv1.
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ðViVjÞb ¼ 2
Z p=2

0
b FVj

Vi ;1
ðhÞsinhcoshdh

þ 2
Z p=2

0

FP
Vi ;1
ðhÞc12ðhÞF

P
P;2ðh12Þc21ðh12Þb FVj

P;1ðhÞ
1� b12

sinhcoshdh

þ 0:5dijFV1 ð5bÞ

(2) If i 6 Ncv1 and Ncv1 < j 6 Ncv1 + Ncv2, then

ðViVjÞf ¼ 2
Z p=2

0

FP
Vi ;1
ðhÞc12ðhÞf FVj

P;2ðh12Þ
1� b12

sin h cos hdh ð6aÞ

ðViVjÞb ¼ 2
Z p=2

0

FP
Vi ;1
ðhÞc12ðhÞb FVj

P;2ðh12Þ
1� b12

sin h cos hdh ð6bÞ

(3) If Ncv1 < i 6 Ncv1 + Ncv2 and Ncv1 < j 6 Ncv1 + Ncv2, then

ðViVjÞf ¼ 2
Z p=2

0
f FVj

Vi ;2
ðhÞsinhcoshdh

þ2
Z p=2

0

FP
Vi ;2
ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þf FVj

P;2ðhÞ
1� b21

sinhcoshdh

þ 0:5dijFV2

ð7aÞ

ðViVjÞb ¼ 2
Z p=2

0
b FVj

Vi ;2
ðhÞsinhcoshdh

þ2
Z p=2

0

FP
Vi ;2
ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þb FVj

P;2ðhÞ
1� b21

sinhcoshdh

þ 0:5dijFV2

ð7bÞ

(4) If Ncv1 < i 6 Ncv1 + Ncv2 and j 6 Ncv1, then

ðViVjÞf ¼ 2
Z p=2

0

FP
Vi ;2
ðhÞc21ðhÞf FVj

P;1ðh21Þ
1� b21

sin h cos hdh ð8aÞ

ðViVjÞb ¼ 2
Z p=2

0

FP
Vi ;2
ðhÞc21ðhÞb FVj

P;1ðh21Þ
1� b21

sin h cos hdh ð8bÞ

In Eqs. (5)–(8), bij (i,j = 1, 2, i – j) is a common ratio of geometric
progression when the radiation enters the jth layer from the ith
layer and transfers inside the two-layer medium, equal to
cijðhÞF

P
P;jðhijÞcjiðhijÞFP

P;iðhÞ, and hij is the refractive angle, decided by
the Snell’s law, equal to arcsin(ni sinh/nj).
jV iV1S 2S
P

q

h

q

h

Fig. 3. Four transferring paths from Vi scattered to Vj in forward direction,
j 6 i 6 Ncv1.
3.2. Deduction of the directional scattering RTCs

For the positive direction of radiative incidence on Vi, (ViVj)ft is
used to denote the quotient of the radiative energy absorbed by
Vj to the radiative energy scattered by Vi; and for the negative
direction of radiative incidence on Vi, (Vi Vj)bt is used to denote
the quotient of the radiative energy absorbed by Vj to the radiative
energy scattered by Vi. Both (ViVj)ft and (ViVj)bt include two parts:
the part of positive incidence on Vj and the part of negative inci-
dence on Vj. So, we have

ðViVjÞft ¼ ðViVjÞff þ ðViVjÞfb ð9aÞ
ðViVjÞbt ¼ ðViVjÞbf þ ðViVjÞbb ð9bÞ

The deduction of (ViVj)ff is given as follows:

(1) For the case of i < j 6 Ncv1.
For the positive direction of radiative incidence on Vi,
according to Fig. 2, when i < j 6 Ncv1, the radiation scattered
by Vi gets to Vj in four paths: one part forwardly scattered by
Vi directly gets to Vj; one part backwardly scattered by Vi

firstly gets to S1, and after being reflected, it gets to Vj; one
part forwardly scattered by Vi firstly gets to interface P,
and after penetrating through P, it transfers in the second
layer and gets back to P, and after penetrating through P
again, it transfers in the first layer and finally gets to Vj in
positive direction; and one part backwardly scattered by Vi

firstly gets to S1, and after being reflected, it reaches P, and
after penetrating through P, it transfers in the second layer
and gets back to P, and after penetrating through P again,
it transfers in the first layer and finally gets to Vj in positive
direction. That is, (ViVj)ff is the sum of its four parts

Z

ðViVjÞff ¼2

p=2

0
C1ðVi!VjÞHq

1ðhÞsinhcoshdh

þ2
Z p=2

0
C1ðVi! S1!VjÞHh

1ðhÞsinhcoshdh

þ2
Z p=2

0

b FVi
P;1ðhÞH

q
1ðhÞc12ðhÞF

P
P;2ðh12Þc2;1ðh12Þf FVj

P;1ðhÞ
1�b12

�sinhcoshdh

þ2
Z p=2

0

f FVi
P;1ðhÞH

h
1ðhÞc12ðhÞF

P
P;2ðh12Þc21ðh12Þf FVj

P;1ðhÞ
1�b12

�sinhcoshdh ð10Þ

where C1(Vi ? Vj) and C1(Vi ? S1 ? Vj) are radiative transfer
functions of the first layer for the paths Vi ? Vj and
Vi ? S1 ? Vj, determined in Appendix A.
(2) For the case of j 6 i 6 Ncv1.
According to Fig. 3, when j 6 i 6 Ncv1, by the similar analysis,
the expression of (ViVj)ff is given by
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Fig. 4. Two transferring paths from Vi scattered to Vj in forward direction, i 6 Ncv1

and j > Ncv1.
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ðViVjÞff ¼0:5dijFV1þ2
Z p=2

0
C1ðVi! P! S1!VjÞHq

1ðhÞ

�sinhcoshdhþ2
Z p=2

0
C1ðVi! S1!VjÞHh

1ðhÞ

�sinhcoshdh

þ2
Z p=2

0

b FVi
P;1ðhÞH

q
1ðhÞc12ðhÞF

P
P;2ðh12Þc21ðh12Þf FVj

P;1ðhÞ
1�b12

�sinhcoshdh

þ2
Z p=2

0

f FVi
P;1ðhÞH

h
1ðhÞc12ðhÞF

P
P;2ðh12Þc21ðh12Þf FVj

P;1ðhiÞ
1�b12

�sinhcoshdh ð11Þ

where C1(Vi ? P ? S1 ? Vj) is a radiative transfer function of
the first layer for the path Vi ? P ? S1 ? Vj, determined in
Appendix A.
(3) For the case of Ncv1 < i < j 6 Ncv1 + Ncv2.
When Ncv1 < i < j 6 Ncv1 + Ncv2, in accordance with Eq. (10),
making use of the symmetry relation, we may writeZ

ðViVjÞff ¼2

p=2

0
C2ðVi!VjÞHq

2ðhÞsinhcoshdh

þ2
Z p=2

0
C2ðVi! P!VjÞHh

2ðhÞsinhcoshdh

þ2
Z p=2

0

b FVi
P;2ðhÞH

q
2ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þf FVj

P;2ðhÞ
1�b21

�sinhcoshdh

þ2
Z p=2

0

f FVi
P;2ðhÞH

h
2ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þf FVj

P;2ðhÞ
1�b21

�sinhcoshdh ð12Þ

Where, C2(Vi ? Vj) and C2(Vi ? P ? Vj) are radiative transfer
functions of the second layer for the Vi ? Vj and Vi ? P ? Vj,
determined in Appendix A.
(4) For the case of Ncv1 < j 6 i 6 Ncv1 + Ncv2

When Ncv1 < j 6 i 6 Ncv1 + Ncv2, the deduction of (ViVj)ff is
similar with that of the case of j 6 i 6 Ncv1, and making use
of the symmetry relation, we haveZ

ðViVjÞff ¼0:5dijFV2þ2

p=2

0
C2ðVi! S2!P!VjÞHq

2ðhÞ

�sinhcoshdh

þ2
Z p=2

0
C2ðVi! P!VjÞHh

2ðhÞsinhcoshdh

þ2
Z p=2

0

b FVi
P;2ðhÞH

q
2ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þf FVj

P;2ðhÞ
1�b21

�sinhcoshdh

þ2
Z p=2

0

f FVi
P;2ðhÞH

h
2ðhÞc21ðhÞF

P
P;1ðh21Þc12ðh21Þf FVj

P;2ðhÞ
1�b21

�sinhcoshdh ð13Þ

where C2(Vi ? S2 ? P ? Vj) is a radiative transfer function of
the second layer for the path Vi ? S2 ? P ? Vj, determined in
Appendix A.
iVjV1S 2S
P

q

h

(5) For the case of i 6 Ncv1 and Ncv1 < j 6 Ncv1 + Ncv2.
When i 6 Ncv1 and Ncv1 < j 6 Ncv1 + Ncv2, as shown in Fig. 4,
the energy scattered by Vi in the first layer transfers to Vj

in the second layer in two ways. According to Fig. 4, we have
Fig. 5. Two transferring paths from Vi scattered to Vj in forward direction, j 6 Ncv1

and i > Ncv1.
ðViVjÞff ¼ 2
Z p=2

0

b FVi
P;1ðhÞH

q
2ðhÞc12ðhÞf FVj

P;2ðh12Þ
1� b12

sinhcoshdh

þ2
Z p=2

0

f FVi
P;1ðhÞH

h
2ðhÞc12ðhÞf FVj

P;2ðh12Þ
1� b12

sinhcoshdh

ð14Þ
(6) For the case of Ncv1 < i 6 Ncv1 + Ncv2 and j 6 Ncv1.

According to Fig. 5, when Ncv1 < i 6 Ncv1 + Ncv2 and j 6 Ncv1,
(ViVj)ff can be obtained as follows

ðViVjÞff ¼ 2
Z p=2

0

f FVi
P;2ðhÞH

h
2ðhÞc21ðhÞf FVj

P;1 h21ð Þ
1� b21

sin h cos hdh

þ 2
Z p=2

0

b FVi
P;2ðhÞH

q
2ðhÞc21ðhÞf FVj

P;1ðh21Þ
1� b21

sin h cos hdh

ð15Þ

In Eqs. (10)–(15), Hq
nðhÞ and Hh

nðhÞ are distributing functions of en-
ergy scattered, defined as

Hq
nðhÞ ¼

R p=2
0 Unðh; hsÞdhs

p=2
ð16aÞ

Hh
nðhÞ ¼

R�p=2
p Unðh; hsÞdhs

p=2
ð16bÞ

where U is the scattering phase function, h is an angle of incidence,
hs is an angle of scattering, subscript ‘‘n” denotes scattering happen-
ing in the nth layer, and superscript ‘‘q” denotes forward scattering,
superscript ‘‘h” denotes backward scattering.

3.3. Determination of reflectivity at interfaces and treatment of total
reflection

For the incidence of an unpolarized radiation, it can be divided
into two parts: the parallel component and the perpendicular com-
ponent. Tracing the two components separately could give the
resultant expressions of the above RTCs, and their arithmetic aver-
age would finally give the directional incidence and the directional
scattering RTCs, shown in Eqs. (5)–(8) and Eqs. (10)–(15),
respectively.

When radiation transfers from the medium with refractive in-
dex of ni towards the adjacent medium with refractive index of
nj, the reflectivity q(h)ij at the interface is [27] for parallel
component
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qkðhÞij ¼
ðnj=niÞ2 cos h� ½ðnj=niÞ2 � sin2 h�0:5

ðnj=niÞ2 cos hþ ½ðnj=niÞ2 � sin2 h�0:5

( )2

ð17aÞ

and for perpendicular component,

q?ðhÞij ¼
½ðnj=niÞ2 � sin2 h�0:5 � cos h

½ðnj=niÞ2 � sin2 h�0:5 þ cos h

( )2

ð17bÞ

where the subscript ‘‘ij” indicates that radiation transfers from the
medium with ni towards the adjacent medium with nj. In this paper,
i, j = 0, 1, 2, and n0 represents the refractive index of environment,
equal to 1.

When ni < nj, total reflection will not occur at the interface, and
q(h)ij determined by Eq. (17) is a continuous function; when ni > nj,
total reflection will occur if h P hc, and q(h)ij is a discontinuous
function over the whole hemisphere space. With the number of
medium layers increasing, total reflection will become very com-
plex. The existence of total reflection will result in integral singu-
larity problem in calculating the above RTCs. To overcome this
problem, Luo et al. [25] proposed a technique based on division
of the integral limit in terms of critical angles for total reflection
at interfaces. While this treatment will introduce errors into results
in theory due to dividing the integral limit into many intervals. We
present a criterion for total reflection to solve the integral singular-
ity problem with no errors introduced.

When radiation transfers from the medium having refractive in-
dex of ni towards the adjacent medium having refractive index of
nj, the reflectivity at interfaces is determined as follows:

(1) If ni < nj, qkðhÞij and q\(h)ij are determined by Eq. (17).
(2) If ni = nj, qkðhÞij ¼ q?ðhÞij ¼ 0.
(3) If ni > nj, when h < hc, qkðhÞij and q\(h)ij are determined by Eq.

(17), and h P hc, qkðhÞij ¼ q?ðhÞij ¼ 1.
(4) h is the incident angle, and hc is the critical angle for total

reflection, hc = arcsin(nj/ni).

Making use of the criterion for total reflection, the integrands in
Eqs. (5)–(8) and Eqs. (10)–(15) become continuous functions over
the whole hemisphere space, which avoids the integral singularity,
and they could be directly integrated. The technique proposed
above does not divide the integral limit, so the errors will not be
introduced into results. The criterion could be applied to the treat-
ment of total reflection at interfaces in an arbitrary multilayer
system.

3.4. Deduction of the scattering RTCs

According to the physical mechanism of radiative transfer, for
the scattering medium, [ViVj] includes two parts. One part is the
quotient of energy leaving Vi that arrives at Vj directly without
being scattered by the medium and is absorbed by Vj. The other
part is the quotient of energy leaving Vi that firstly arrives at other
control volumes, and after being scattered many times, arrives at Vj

and is partly absorbed by Vj.
For the anisotropic scattering medium, energy scattered by con-

trol volumes is related to radiative incidence and scattering direc-
tion. According to the above analysis, making use of the RTCs
deduced above, the scattering RTCs could be deduced. Before that,
the absorbing RTCs, the directional incidence RTCs and the
directional scattering RTCs must be normalized. For the RTC of
control volume vs control colume, its coefficient of normalization
is 1/(4jiDxn). In the following deduction, superscript ‘‘*” denotes
the normalized parameter, subscripts ‘‘a” and ‘‘s” denote the
absorbed and scattered parts, respectively. For convenience, first
give four transferring expressions for energy scattered as follows.
When n P 2:

HðVlnþ1
Vln Þ

�ft
a ¼

XMt

ln¼1

½ðVlnþ1
Vln Þ

�ff xln HðVln Vln�1
Þ�fta

þ ðVlnþ1 VlnÞ
�fbxln HðVln Vln�1 Þ

�bt
a � ð18aÞ

HðVlnþ1
Vln Þ

�bt
a ¼

XMt

ln¼1

½ðVlnþ1
Vln Þ

�bf xln HðVln Vln�1
Þ�fta

þ ðVlnþ1
VlnÞ

�bbxln HðVln Vln�1
Þ�bt

a � ð18bÞ

HðVlnþ1
Vln Þ

�ft
s ¼

XMt

ln¼1

½ðVlnþ1
Vln Þ

�ff xln HðVln Vln�1
Þ�fts

þ ðVlnþ1
VlnÞ

�fbxln HðVln Vln�1
Þ�bt

s � ð18cÞ

HðVlnþ1
Vln Þ

�bt
s ¼

XMt

ln¼1

½ðVlnþ1
Vln Þ

�bf xln HðVln Vln�1
Þ�fts

þ ðVlnþ1
VlnÞ

�bbxln HðVln Vln�1
Þ�bt

s � ð18dÞ

When n = 1:

HðVl2 Vl1 Þ
�ft
a ¼

XMt

l1¼1

½ðVl2 Vl1 Þ
�ff xl1 ðVl1 VjÞ�ftgj

þ ðVl2 Vl1 Þ
�fbxl1 ðVl1 VjÞ�btgj� ð19aÞ

HðVl2 Vl1 Þ
�bt
a ¼

XMt

l1¼1

½ðVl2 Vl1 Þ
�bf xl1 ðVl1 VjÞ�ftgj

þ ðVl2 Vl1 Þ
�bbxl1 ðVl1 VjÞ�btgj� ð19bÞ

HðVl2 Vl1 Þ
�ft
s ¼

XMt

l1¼1

½ðVl2 Vl1 Þ
�ff xl1 ðVl1 VjÞ�ftxj

þ ðVl2 Vl1 Þ
�fbxl1 ðVl1 VjÞ�btxj� ð19cÞ

HðVl2 Vl1 Þ
�bt
s ¼

XMt

l1¼1

½ðVl2 Vl1 Þ
�bf xl1 ðVl1 VjÞ�ftxj

þ ðVl2 Vl1 Þ
�bbxl1 ðVl1 VjÞ�btxj� ð19dÞ
(1) After the first scattering
½ViVj��1st
a ¼ ðViVjÞ�gj ½ViVj��1st

s ¼ ðViVjÞ�xj
(2) After the second scattering
½ViVj��2nd
a ¼ ½ViVj��1st

a þ
XMt

l1¼1

½ðViVl1 Þ
�f xl1 ðVl1 VjÞ�ftgj

þ ðViVl1 Þ
�bxl1 ðVl1 VjÞ�btgj�

½ViVj��2nd
s ¼

XMt

l1¼1

½ðViVl1 Þ
�f xl1 ðVl1 VjÞ�ftxj

þ ðViVl1 Þ
�bxl1 ðVl1 VjÞ�btxj�
(3) After the third scattering
½ViVj��3rd
s ¼

XMt
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�f xl2 HðVl2 Vl1 Þ

�ft
s
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�bt
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a þ
XMt
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fðViVl2 Þ
�f xl2

XMt

l1¼1

½ðVl2 Vl1 Þ
�ff

�xl1 ðVl1 VjÞ�ftgj þ ðVl2 Vl1 Þ
�fbxl1 ðVl1 VjÞ�btgj�

þ ðViVl2 Þ
�bxl2

XMt

l1¼1

½ðVl2 Vl1 Þ
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¼ ½ViVj��2nd
a þ

XMt

l2¼1

½ðViVl2 Þ
�f xl2 HðVl2 Vl1 Þ

�ft
a

þ ðViVl2 Þ
�bxl2 HðVl2 Vl1 Þ

�bt
a �
(4) After the (n + 1)th scattering, if Max
PMt

j¼1½ViVj��ðnþ1Þth
s < 10�10,

the redistributing of energy by anisotropic scattering is fin-
ished, and by induction, we have
½ViVj��ðnþ1Þth
a ¼ ½ViVj��nth

a þ
XMt

ln¼1

½ðViVln Þ
�f xln HðVln Vln�1

Þ�fta

þ ðViVln Þ
�bxln HðVln Vln�1

Þ�bt
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½ViVj��ðnþ1Þth
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XMt
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½ðViVlnÞ
�f xln HðVln Vln�1

Þ�fts

þ ðViVln Þ
�bxln HðVln Vln�1 Þ

�bt
s � ð20bÞ
Considering emissive power of 4jigiDxn for Vi, the scattering RTC
[ViVj] could be finally found through the inverse operation,

½ViVj� ¼ 4jigiDxn½ViVj��ðnþ1Þth
a ð21Þ

The rest scattering RTCs such as [ViS+1], [S+1 Vi], [ViS�1] and
[S�1Vi], could be obtained by similar deductions.

4. Validation of radiative transfer model and numerical method

4.1. Validation of radiative transfer coefficients

RTCs include all the information of radiative transfer, so the cor-
rectness of RTCs could be used to validate the radiative transfer
model. From the reciprocity of radiative transfer and the conserva-
tion of radiative energy, RTCs must satisfy the relations of reciproc-
ity and integrality.
ison with Ref. [28] and exact solution

Optical thickness Reflectivity

x2 j1L1 j2L2 Ref. [28] Exact

0.8 0.5 0.5 0.075338 0.075
0.2 0.5 0.5 0.218436 0.218
0.8 1.0 0.5 0.053409 0.053
0.2 1.0 0.5 0.285692 0.285
0.8 1.0 2.0 0.061625 0.061
0.2 1.0 2.0 0.287419 0.287

n in Ref. [28].

ison with Ref. [29]

Optical thickness Refractive index

x2 j1L1 j2L2 n1 n2

0.3 0.05 0.05 1.5 3.0
1.0 0.05 0.05 1.5 3.0
0.3 0.5 0.5 1.5 3.0
1.0 0.5 0.5 1.5 3.0
0.3 5.0 5.0 1.5 3.0
1.0 5.0 5.0 1.5 3.0
0.8 1.0 0.5 1.5 1.333
0.2 0.5 1.0 1.333 1.5
0.0 1.0 0.5 1.5 1.333
1.0 0.5 1.0 1.333 1.5
1.0 1.0 0.5 1.5 1.333
1.0 0.5 1.0 1.333 1.5
Reciprocity relation

n2
Su
½SuVi� ¼ n2

i ½ViSu� ð22aÞ
n2

Su
½SuSv� ¼ n2

Sv
½SvSu� ð22bÞ

n2
i ½ViVj� ¼ n2

j ½VjVi� ð22cÞ

Integrality relation

½ViSu� þ ½ViSv� þ
XMt

j¼1

½ViVj� ¼ 4jigiDxn; Vi 2 the nth layer ð23aÞ

½SuSu� þ ½SuSv� þ
XMt

j¼1

½SuVj� ¼ eu ð23bÞ

From the calculation, Eqs. (22) and (23) are satisfied well with RTCs.

4.2. Comparison with other results from references

Attia [28] used a Galerkin-iterative technique and Liou et al.
[29] used Nystrom method to solve the problem of radiative trans-
fer in a two-region isotropic scattering slab with Fresnel interfaces
and obtained the hemispherical reflectivity and transmissivity of
the slab. In Ref. [28] refractive indices of the slab were assumed
to be one, and Ref. [29] allowed refractive indices larger than
one. In Ref. [29] the reflectivity at interfaces was determined by

qij ¼
qkðhÞij þ q?ðhÞij

2
ð24Þ

For comparison, in our radiative transfer model the reflectivity at
interfaces is also determined by Eq. (24) and the two polarized com-
ponents of radiation are not traced separately.

According to Attia [28] and Wu and Liou [29], the hemispherical
reflectivity and transmissivity of the two-layer slab are equal
to RTCs [S�1S�1] and [S�1S+1] in quantity. Table 1 gives the
Transmissivity

a This paper Ref. [28] Exacta This paper

34 0.075335 0.313376 0.31338 0.313380
44 0.218429 0.313377 0.31338 0.313380
41 0.053407 0.166259 0.16626 0.166261
69 0.285686 0.213751 0.21375 0.213754
63 0.061624 0.055648 0.05565 0.055650
42 0.287413 0.034981 0.03498 0.034981

Reflectivity Transmissivity

Ref. [29] This paper Ref. [29] This paper

0.33077 0.330765 0.55863 0.558633
0.39544 0.395447 0.60455 0.604553
0.16057 0.160566 0.21130 0.211297
0.52266 0.522670 0.47733 0.477330
0.11245 0.112431 0.00002 0.000019
0.77008 0.769837 0.22991 0.230163
0.11350 0.113501 0.18584 0.185841
0.15372 0.153712 0.18584 0.185841
0.30520 0.305193 0.26519 0.265194
0.13583 0.135827 0.26519 0.265194
0.48603 0.486022 0.51397 0.513978
0.48603 0.486022 0.51397 0.513978
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comparison with Ref. [28] and the exact solution and Table 2 gives
the comparison with Ref. [29]. From Tables 1 and 2 we can see that
the results of this paper accord very well with those of Ref. [28],
the exact solution and Ref. [29], which demonstrates that the radi-
ative transfer model of this paper is correct.

4.3. Numerical method

The radiative source term Ur
i is a nonlinear function of Ti, so it

must be linearized as follows [30]:

Ur;m;nþ1
i ¼ Scm;nþ1

i þ Spm;nþ1
i Tm;nþ1

i ð25Þ

with Scm;nþ1
i ¼Ur;m;n

i �ðdUr
i=dTiÞm;nTm;n

i , and Spm;nþ1
i ¼ðdUr

i=dTiÞm;n,
where the superscript ‘‘m” denotes the ‘‘mth” time step, and ‘‘n” de-
notes the ‘‘nth” iteration in the ‘‘mth” time step. After linearization
of the nonlinear term in Eq. (1), linear equations may be obtained
and solved by TDMA (tri-diagonal matrix algorithm) to find temper-
atures at all nodes.

5. Transient coupled heat transfer

Considering a two-layer composite having two semitransparent
surfaces with L1 = L2 = 0.01 m, C1 = C2 = 1.5 � 105 J m�3 K�1 and
j1 = 50 m�1, j2 = 200 m�1, the effects of conduction–radiation
parameter, scattering albedo and refractive index on transient cou-
pled heat transfer are examined. Scattering phase functions of the
two layers are taken as the combination of U1(h,hi) = 1 + coshcoshi

and U2(h,hi) = 1 � coshcoshi.

5.1. Effects of conduction–radiation parameter

Calculation parameters are taken as: n1 = n2 = 2.0, x1 = x2 = 0.5,
H1 = 1.0, H2 = 0, T�1 = Tr = 1500 K, and T0 = Tg1 = Tg2 = T+1 = 500 K.

When the conduction–radiation parameter is small,
N1 = N2 = 0.0005 and 0.005, there are two temperature peaks
appearing in the composite medium in the transient, as shown in
Fig. 6a and b. The first peak lies in the area close to the heating sur-
face S1, and is caused by the external radiation heating coupling
with convection cooling in surroundings. The second peak existing
in the area of the second layer close to the interface P is a result of
the inhomogenous optical property of the composite medium.

Results for N1 = N2 = 0.0005 are plotted in Fig. 6a. In the first
layer, after the first temperature peak, the temperature gradually
falls along the thickness direction. This is because that the external
radiation penetrating through the semitransparent surface S1 is
slowly attenuated by the first layer medium, thus the portion ab-
sorbed is a little, as a result of this layer with a small extinction
coefficient of j1 = 50 m�1. Most of the rest radiative energy enter-
ing into the second layer is immediately absorbed as a result of the
extinction coefficient of this layer suddenly increasing to
j2 = 200 m�1 several times bigger than that of the first layer, which
causes the temperature to rise rapidly in the area close to the inter-
face P, and consequently causes the second temperature peak to
appear therein. After the second peak, the radiative energy is grad-
ually attenuated in the second layer, so that the temperature also
decreases gradually along the thickness direction. Notice that the
speed of the temperature decreasing in the second layer is faster
than that in the first layer, that is to say the temperature gradient
of the second layer is bigger than that of the first layer after the
peaks. When temperature fields come into the steady state, the
second temperature peak disappears and only the first tempera-
ture peak still exists.

The mechanism for the second temperature peak disappearance
is now analyzed. With the evolving of the heat transfer, tempera-
tures in the composite medium climb gradually as a result of the
left external radiation heating on the whole medium. The area
where the second peak appears absorbs the radiant energy from
S�1, and at the same time it transfers one part of energy to the
neighboring regions by conduction and transfers the other part
to the regions at lower temperatures by radiation. At the beginning
of the transient, the area having temperature peak intensely ab-
sorbs heat so that the peak grows up and the temperature differ-
ence between the peak area and the surrounding areas increases.
As a result of increase of peak, the absorption of radiative energy
from the left external heat source is weakened in the peak area.
As a result of increase of temperature difference, heat transfer from
the peak area to other areas by conduction and radiation is inten-
sified, that is to say the absorption of heat from the peak area gets
more in other areas, which causes the temperature in the other
areas to increase rapidly, and thus the temperature difference de-
creases, that is to say the temperature peak gets relatively small. At
the steady state, the quantity of absorption of heat is equal to the
quantity of dissipation of heat, so thermal equilibrium is achieved,
and the second temperature peak completely disappears.

When N1 = N2 = 0.005, because of strengthening of conduction,
temperature curves get smooth and the first temperature peak is
very unconspicuous, as shown in Fig. 6b. When the conduction–
radiation parameter increases to 0.05, temperature curves get
more smooth and in the transient only one peak exists in the area
close to the interface of the second layer, as plotted in Fig. 6c. In
Fig. 6c, the temperature peak in the transient is caused by the
inhomogenous distributing of extinction coefficients, and the peak
appears at the steady state as a result of radiation heating and con-
vective cooling. From Fig. 6a–e, we may observe that the first tem-
perature peak is influenced mainly by the conduction–radiation
parameter of the left layer having a heating surface: compared to
the Fig. 6a, when N1 = 0.05 and N2 keeps unchanged, as shown in
Fig. 6e, in the transient, due to the decrease of the radiation ratio,
the first peak does not appear and only the second peak appear;
until the second peak disappears at steady state, the first peak ap-
pears. From the above analysis, we may know that the first and the
second temperature peaks are two sorts of temperature peaks hav-
ing completely different characteristics: the first sort is caused by
external radiation heating and environmental convective cooling,
still existing in steady state; the second one is due to maximum
of absorption of heat caused by inhomogeneous optical properties,
only existing in transients of heat transfer.

5.2. Effects of scattering albedo

Calculation parameters are taken as: n1 = n2 = 1.5, T0 = 500 K,
Tr = 2000 K, Tg1 = Tg2 = 500 K, T�1 = 2000 K, T+1 = 1000 K, N1 =
N2 = 0.0005, and H1 = H2 = 0.

From Fig. 7a, we may see that temperature distributions in the
composites having different combination of two scattering phase
functions are almost the same, when scattering albedos of the
two-layer composite are taken as small values such as
x1 = x2 = 0.1. When scattering albedos increase to x1 = x2 = 0.9,
the difference of the temperature distributions is relatively evi-
dent, as shown in Fig. 7b. In addition, for composites having
homogeneous albedos, scattered quotient and absorbed quotient
of radiative energy in two layers are the same, respectively, so
the temperature fields in media are similar, as shown in Fig. 7a
and b. While for composites having different albedos in each
layer, scattered quotient and absorbed quotient of radiative en-
ergy in two layers are respectively different, so there are different
trends of temperature evolution along the thickness direction in
the composite media, as shown in Fig. 7c and d. For the composite
having x1 = 0.1 and x2 = 0.9, the absorption coefficient of the left
layer is 45m�1 and that of the right layer is 20 m�1, so the absorp-
tion of thermal radiation in the left layer is more intense than
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Fig. 6. Effects of conduction–radiation parameters on transient temperature fields in an anisotropic scattering composite layer.
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that in the right layer, which causes the temperature to fall in the
region close to interface P, and the temperature level of the left
layer to be over that of the right layer, as shown in Fig. 7c. For
the composite having x1 = 0.9 and x2 = 0.1, the results plotted
in Fig. 7d shows that in the right layer the trend of the tempera-
ture changing is quite different from that shown in Fig. 7c. In this
case the absorption coefficient of the right layer is 180 m�1, much
bigger than the absorption coefficient of 5 m�1of the left layer, so
the absorption of thermal radiation in the right layer is much
more intense than that in the left layer, which causes the temper-
ature to rise sharply in the region close to interface P and a sharp
temperature peak to appear in the right layer. Hence one can see
that in the transient a trend in the temperature change is mainly
decided by the part of absorption in extinction coefficient instead
of the part of scattering. The temperature peaks in Fig. 7a and b
are caused by the inhomogeneous extinction coefficient resulting
in maximum of absorption of heat in the peak areas. The temper-
ature peaks shown in Fig. 7a, b and d are the second sort of peaks,
not existing at a steady state. Without convection considered, the
heating surface is not subject to convective cooling, so the first
sort of temperature peaks does not exist in heat transfer. Com-
pared with the case of transients, in steady state heat transfer is
affected so little by the scattering and the temperature distribu-
tion is dominated mainly by the external heating conditions. So
under the same external heating conditions the temperature
curves of all the four cases in Fig. 7 in steady state show little dif-
ference although their scattering albedoes distributions are quite
different.

5.3. Effects of refractive index

Calculation parameters are taken as: x1 = x2 = 0.5, T0 = 500 K,
Tr = 1500 K, Tg1 = Tg2 = 500 K, T�1 = 1500 K, T+1 = 1000 K, N1 = N2 =
0.0005, and H1 = 1.0, H2 = 2.0.
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Fig. 7. Effects of scattering albedo on transient temperature fields in an anisotropic scattering composite layer.
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Fig. 8. Effects of refractive index on transient temperature fields in an anisotropic scattering composite layer.
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For a semitransparent medium, thermal emission is propor-
tional to the square of a refractive index, so the refractive index
has a significant influence on transient heat transfer in the med-
ium. In the medium having a smaller refractive index, the thermal
emission is relatively weaker, and the thermal absorption is rela-
tively stronger, so the average temperature level of the medium
with a smaller refractive index remains higher compared to the
medium having a bigger refractive index, as shown in Fig. 8. Com-
pared to the medium having a smaller refractive index, the tem-
perature peaks are smaller in the medium with a bigger
refractive index under the condition for this calculation, as shown
in Fig. 8a and b. From Fig. 8 we can also see that the temperature
distributions in the medium with a bigger refractive index are
more uniform. This because the larger the refractive index is, the
stronger the total reflection is at the interface side facing the med-
ium having the bigger refractive index, and the radiative energy re-
flected back to the medium causes a gentler temperature curves.
For the composite having different refractive index in two layers,
as shown in Fig. 8c and d, the temperature fields are decided by
thermal emission of the medium and total reflection at interfaces
together. Total reflection at interfaces and thermal emission are
weak in the layer having a small refractive index, and total reflec-
tion at interfaces and thermal emission are strong in the layer hav-
ing a big refractive index. Compared to Fig. 8a and b, from Fig. 8c
and d one can see that the average temperature level in a medium
layer depends mainly on the thermal emission of this layer med-
ium, and total reflection at interfaces in this layer mainly causes
its temperature fields to be gentler. Moreover, since two surfaces
are all subject to external radiation heating and convective cooling
together, two temperature peaks may appear in areas adjacent to
the surfaces in the transient, as shown in Fig. 8, and they belong
to the second sorts of peaks.
6. Conclusions

This paper developed a radiative transfer model using a ray-
tracing/nodal-analyzing method for a two-layer composite med-
ium with anisotropic scattering, and investigated the coupled
radiative–conductive heat transfer, examining the effects of con-
duction–radiation parameters, scattering albedos and refractive in-
dexes. From what has been discussed above, we may draw some
conclusions as follows.

(1) Using the radiative transfer model for single layer, and com-
bined with the concepts of directional incidence and direc-
tional scattering, radiative transfer coefficients are deduced
for the anisotropic scattering composite medium with semi-
transparent surfaces by a ray-tracing method, and the radi-
ative transfer model is developed for a two-layer
anisotropic scattering medium.

(2) A more concise and precise criterion for total reflection
occurring at interfaces is proposed in order to solve the com-
plicated total reflection problem at semitransparent inter-
faces which will result in integral singularity problem at
the critical angle. The general criterion will not introduce
any errors into results and could be applied to the treatment
of total reflection at interfaces in an arbitrary multilayer
system.

(3) In a semitransparent medium having semitransparent sur-
faces, there are two sorts of temperature peaks appearing
at transient heat transfer: one is caused by external radia-
tion heating and environmental convection cooling, still
existing in steady state; the other is due to maximum of
absorption of heat caused by inhomogeneous optical proper-
ties (such as extinction coefficients, etc.), only existing in
transients of heat transfer. Furthermore, the mechanism
for disappearance of the second temperature peak at steady
state is qualitatively analyzed.

(4) For a scattering medium, the absorption part and the scat-
tering part of extinction coefficients have different effects
on transient heat transfer, and the developmental tendency
of transient temperatures in the medium is dominated
mainly by the absorption part instead of the scattering part.

(5) The average temperature level in a medium layer depends
mainly on the thermal emission of this layer medium, and
total reflection at interfaces in this layer mainly causes its
temperature fields to be gentler.
Acknowledgement

This research is supported by the Major Program of Interna-
tional Cooperation of National Natural Science Foundation of China
(No. 50620120442), and the Key Project of National Natural Sci-
ence Foundation of China (No. 50336010). The authors are in-
debted to them for their financial support.

Appendix A. Single-layer radiative transfer model

We are interested in the energy transfer process, in which the
radiative energy emitted by an interface or a control volume prop-
agates within the nth layer of a composite medium, and is reflected
and absorbed many times until the energy becomes zero.

In the following deduction, bn(h) is a common ratio of geometric
progression when the radiation transfers in the nth layer, equal to

qn0ðhÞqnmðhÞ expð�2jnLn= cos hÞ

where n, m = 1, 2, and n – m.
By tracing the transfer process for the radiative energy emitted

by the interface P at the angle h in the nth layer, we can obtain the
following radiative energy quotient functions

FP
P;nðhÞ ¼

qn0ðhÞ expð�2jnLn= cos hÞ
1� bnðhÞ

ðA:1Þ

f FVj
P;1ðhÞ ¼

q10ðhÞ exp½�j1ðL1 þ xj
S1
Þ= cos h�½1� expð�j1Dx1= cos hÞ�
1� b1ðhÞ

ðA:2aÞ

f FVj
P;2ðhÞ ¼

expð�j2xj
P= cos hÞ½1� expð�j2Dx2= cos hÞ�

1� b2ðhÞ
ðA:2bÞ

b FVj
P;1ðhÞ ¼

expð�j1xjþ1
P = cos hÞ½1� expð�j1Dx1= cos hÞ�

1� b1ðhÞ
ðA:3aÞ

b FVj
P;2ðhÞ ¼

q20ðhÞ exp½�j2ðL2 þ xjþ1
S2
Þ= cos h�½1� expð�j2Dx2= cos hÞ�
1� b2ðhÞ

ðA:3bÞ

where ‘‘f” denotes the positive incidence upon Vj, and ‘‘b” denotes
the negative incidence upon Vj.

By tracing the transfer process for the radiative energy emitted
by the control volume at the angle h in the nth layer, we can obtain
the following radiative energy quotient functions

FP
Vj ;n
ðhÞ ¼ f FVj

P;nðhÞ þ b FVj
P;nðhÞ ðA:4Þ

If the radiative energy emitted by Vi reaches Vj in a positive direc-
tion, when i < j, we have

f FVj
Vi ;1
ðhÞ ¼ C1ðVi ! VjÞ þ C1ðVi ! S1 ! VjÞ ðA:5Þ

f FVj
Vi ;2
ðhÞ ¼ C2ðVi ! VjÞ þ C2ðVi ! P ! VjÞ ðA:6Þ
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where C1(Vi ? Vj) and C1(Vi ? S1 ? Vj) are radiative transfer func-
tions of the first layer for the paths Vi ? Vj and Vi ? S1 ? Vj, and
C2(Vi ? Vj) and C2 (Vi ? P ? Vj) are radiative transfer functions of
the second layer for the Vi ? Vj and Vi ? P ? Vj,

C1ðVi ! VjÞ ¼
expð�j1xj

iþ1= cos hÞ½1� expð�j1Dx1= cos hÞ�2

1� b1ðhÞ
ðA:7aÞ

C1ðVi ! S1 ! VjÞ

¼
q1 exp½�j1ðxS1

i þ xj
S1
Þ= cos h�½1� expð�j1Dx1= cos hÞ�2

1� b1ðhÞ
ðA:7bÞ

C2ðVi ! VjÞ ¼
expð�j2xj

iþ1= cos hÞ½1� expð�j2Dx2= cos hÞ�2

1� b2ðhÞ
ðA:8aÞ

C2ðVi ! P ! VjÞ

¼ q21ðhÞ exp½�j2ðxP
i þ xj

PÞ= cos h�½1� expð�j2Dx2= cos hÞ�2

1� b2ðhÞ
ðA:8bÞ

and when i P j, we have

f FVj
Vi ;1
ðhÞ ¼ C1ðVi ! P ! S1 ! VjÞ þ C1ðVi ! S1 ! VjÞ ðA:9Þ

f FVj
Vi ;2
ðhÞ ¼ C2ðVi ! S2 ! P ! VjÞ þ C2ðVi ! P ! VjÞ ðA:10Þ

where C1(Vi ? S1 ? Vj) and C2 (Vi ? P ? Vj) are seen in Eqs. (A.7b)
and (A.8b), and C1(Vi ? P ? S1 ? Vj) and C2(Vi ? S2 ? P ? Vj), as
radiative transfer functions for the path Vi ? P ? S1 ? Vj in the first
layer and the path Vi ? S2 ? P ? Vj in the second layer, are given by

C1ðVi ! P ! S1 ! VjÞ

¼
q10ðhÞq12ðhÞ exp

�j1ðxP
iþ1
þL1þxj

S1
Þ

cos h

� �
1� exp �j1Dx1

cos h

� �� �2

1� b1ðhÞ
ðA:11Þ

C2ðVi ! S2 ! P ! VjÞ

¼
q20ðhÞq21ðhÞ exp

�j2ðx
S2
iþ1
þL2þxj

P Þ
cos h

� �
1� exp �j2Dx2

cos h

� �� �2

1� b2ðhÞ
ðA:12Þ

If the radiative energy emitted by Vi reaches Vj in a negative direc-
tion, when i 6 j, we have

b FVj
Vi ;1
ðhÞ ¼ C1ðVi ! P ! VjÞ þ C1ðVi ! S1 ! P ! VjÞ ðA:13Þ

b FVj
Vi ;2
ðhÞ ¼ C2ðVi ! S2 ! VjÞ þ C2ðVi ! P ! S2 ! VjÞ ðA:14Þ

where C1(Vi ? P ? Vj), C1 (Vi ? S1 ? P ? Vj), C2(Vi ? S2 ? Vj) and
C2 (Vi ? P ? S2 ? Vj) are given by

C1ðVi ! P ! VjÞ

¼
q12ðhÞ exp½�j1ðxP

iþ1 þ xjþ1
P Þ= cos h�½1� expð�j1Dx1= cos hÞ�2

1� b1ðhÞ
ðA:15aÞ

C1ðVi ! S1 ! P ! VjÞ

¼
q10ðhÞq12ðhÞ exp

�j1ðx
S1
i
þL1þxjþ1

P
Þ

cos h

� �
1� exp �j1Dx1

cos h

� �� �2

1� b1ðhÞ
ðA:15bÞ

C2ðVi ! S2 ! VjÞ

¼
q20ðhÞ exp½�j2ðxS2

iþ1 þ xjþ1
S2
Þ= cos h�½1� expð�j2Dx2= cos hÞ�2

1� b2ðhÞ
ðA:16aÞ

C2ðVi ! P ! S2 ! VjÞ

¼
q20ðhÞq21ðhÞ exp

�j2ðxP
i
þL2þxjþ1

S2
Þ

cos h

� �
1� exp �j2Dx2

cos h

� �� �2

1� b2ðhÞ
ðA:16bÞ
and when i > j, we have

b FVj
Vi ;1
ðhÞ ¼ C1ðVi ! VjÞ þ C1ðVi ! P ! VjÞ ðA:17Þ

b FVj
Vi ;2
ðhÞ ¼ C2ðVi ! VjÞ þ C2ðVi ! S2 ! VjÞ ðA:18Þ

where C1(Vi ? Vj), C2(Vi ? Vj), C1(Vi ? P ? Vj), and C2 (Vi ?
S2 ? Vj) can be seen in Eqs. (A.7a), (A.8a), (A.15a) and (A.16a).
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